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It has come to the attention of the author that in the above
article a number of errors occurred.

• There is a mistake in the first paragraph on page 4. It
should read eβψ < 1 instead of eψ < 1, so that it is
dimensionless.

• On page 4, in section 2.2.1, both occurrences of reference
[17] should read [12,13].

• Further to this the following references are corrected as
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Abstract
Recent progress in understanding the effect of electrostatics in soft matter is presented. A vast
number of materials contain ions, ranging from the molecular scale (e.g. electrolyte) to
the meso/macroscopic one (e.g. charged colloidal particles or polyelectrolytes). Their
(micro)structure and physico-chemical properties are especially dictated by the famous and
redoubtable long-ranged Coulomb interaction. In particular, theoretical and simulational
aspects, including the experimental motivations, will be discussed.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Probably one of the best known and understood ionic materials
is sodium chloride (NaCl). In its solid form (i.e. NaCl cubic-
like crystalline lattice), the experimentally measured heat of

vaporization (7.92 eV) can be deduced (within about 10%)
from a straightforward lattice sum of the form1

EM = e2

4πε0

∑

lattice

α j

|�r j | � −1.747
e2

4πε0aL
(1)

leading to the theoretical Madelung energy (here EM =
−8.94 eV) [1, 2]. This striking good agreement demonstrates
that electrostatics is indeed the relevant ingredient governing
this ionic crystal [3]. In its liquid form, NaCl plays a
fundamental role in soft matter, since it controls the degree
of screening of the Coulomb interaction in all water based
solutions. It is exactly this type of problem that this review
will address: electrostatics in soft matter.

Virtually all materials are more or less charged at the
mesoscopic scale, depending on the degree of polarizability
of the embedding solvent (or matrix) and the solute particles
(e.g. colloidal particles, polymers, membranes, etc). The best
known example of a polar solvent is evidently water, which
plays a crucial role in life and in biological processes as well as
in industrial applications. When macroscopic solute particles
are polar too, they can then dissociate into charged particles
(also called macroions) and (microscopic) counterions. The
counterion distribution near macroions turns out to be decisive
for the surface properties of the macroion.

1 The resulting energy in equation (1) corresponds to the cohesive energy
per NaCl molecule. An ion (either Na+ or Cl−) is placed at the origin
and α j = +1,−1 depending on the type of ion sitting at the lattice site
�r j . e = 1.602 × 10−19 C stands for the usual elementary charge, ε0 =
8.854 × 10−12 F m−1 for the vacuum permittivity, and aL = 2.81 Å for the
NaCl lattice parameter.
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The pioneering works of Gouy and Chapman [4, 5], re-
alized almost one century ago, concern the counterion distri-
bution near a planar charged interface. Applying the currently
named Poisson–Boltzmann theory, they demonstrated that the
counterion distribution profile decays algebraically as a func-
tion of the separation from the wall with a characteristic length
that is inversely proportional to the surface charge density of
the wall. Ten years later, Debye and Hückel [6] accomplished
a fundamental advance towards the understanding of screening.
This theory, originally developed for electrolytes, i.e. a solution
of microscopic cations and anions such as Na+ and Cl−, and
based on the linearization of the Poisson–Boltzmann equation,
is now widely used in plasma and solid state physics2.

Mean-field theories are appealing tools due to their
intuitive and clear physical basis, and are robust theories
as long as electrostatic correlations are not too important.
In many practical situations (chromatin, polyelectrolyte
multilayering, charged colloidal suspension, etc) electrostatic
correlations are strong enough to cause mean-field theories
to fail, even on a qualitative level. Two striking
and natural consequences of electrostatic correlations that
can not be explained by mean-field theories are charge
reversal (also called overcharging) and like-charge attraction:
(i) overcharging concerns the situation where a macroion is
locally covered by a cloud of counterions whose global charge
overcompensates that of the macroion so that the net charge (or
effective charge) of the complex changes sign; (ii) like-charge
attraction is the counter-intuitive effective attraction between
two macroions having the same electric charge sign.

A colloidal suspension, the classical material of soft
matter science, can crystallize via a strong enough mutual
electrostatic repulsion. An understanding of the resulting
phase behavior necessitates approaches where particle–particle
correlations must obviously be taken into account. This
constitutes another example where approaches going beyond
the mean-field level are required.

The present work examines the problem of electrostatics
in soft matter systems using simple theoretical models and
computer simulations. The role of small counterions is
addressed in section 2. The relevance of excluded volume
(i.e. the finite hard-core size of the constitutive ions) is
discussed in section 3. The problem of image charges as
occurring near curved dielectric interfaces is presented in
section 4. The basic physics in more complex processes such
as polyelectrolyte adsorption and multilayering is elucidated
in section 5. Colloidal dispersions in strong confinement are
presented in section 6. Finally, a conclusion and a possible
outlook are provided in section 7.

2. Electrolyte at interfaces

2.1. Foundations of electrostatic mean-field theories in
soft matter

This section deals with the foundations of the electrostatic
mean-field theories in soft matter. It is written on a pedagogical
2 Note that a similar potential of interaction (so-called Yukawa potential)
arises at the subatomic scale to describe the cohesion of the nuclear matter.
Nonetheless, in nuclear physics, the interpretation of this potential in terms of
screening is not adequate.

Figure 1. Model for a simple electrolyte near a (negatively) charged
surface.

level such that the non-specialist reader should be in a position
to easily comprehend the underlying physics. Nonetheless,
the expert will also certainly find some clarifying ideas in the
forthcoming discussion.

2.1.1. Poisson–Boltzmann theory. The model system we have
here in mind is sketched in figure 1. We have to deal with a
uniformly charged interface with a surface charge density σ ,
separating the semi-infinite substrate from a simple electrolyte
(consisting of univalent cations (+) and anions (−)) with bulk
concentration ρ0. The system is globally electroneutral and
the embedding solvent is merely characterized by its dielectric
constant. In this context, the first theoretical determination
of counterion distribution for an inhomogeneous fluid was
realized independently by Gouy [4] and by Chapman [5]
almost a century ago. This mean-field approach corresponding
to the so-called Poisson–Boltzmann (PB) theory will now be
explained and discussed.

A central quantity in the statistical mechanics of
fluids is the potential of mean force (PMF). The latter
corresponds to the potential stemming from the effective
force between two objects. The term ‘effective’ means here
a thermodynamical averaging whose form is dependent on
the ensemble (e.g. canonical, grand canonical · · ·) under
consideration. For the sake of simplicity we will consider the
thermodynamical (i.e. macroscopic) limit, where all ensembles
are equivalent.

A good starting point is provided by the exact Poisson
equation relating the mean electrostatic potential (MEP), ψ(z),
to the PMF, w±(z), as follows:

�ψ(z) = − eρ0

ε0εsolv
{exp[−βw+(z)] − exp[−βw−(z)]}, (2)

where εsolv is the relative permittivity of the solvent (for water
εsolv ≈ 80); β ≡ 1/(kBT ) the reduced inverse temperature,
with kB being the Boltzmann constant and T the absolute
temperature. The central approximation of PB theory is to now
set

w±(z)
(PB)� ±eψ(z), (3)
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such that the exact Poisson equation (2) becomes in the
framework of the PB theory

�ψ(z) = 2eρ0

ε
sinh [βeψ(z)] (ε ≡ ε0εsolv) (4)

which is the well known PB equation. The resulting MEP, that
satisfies the boundary condition − dψ

dz |z=0 = σ
ε

, reads [7]

ψ(z) = −2kBT

e
ln

[
1 + γ exp(−κz)

1 − γ exp(−κz)

]
, (5)

where γ is given by the positive root of

γ 2 + (2κb)γ − 1 = 0 so that

0 � γ = −κb +
√

1 + (κb)2 < 1. (6)

We have introduced here in equations (5) and (6) two important
length scales, namely the screening length κ−1

κ2 ≡ 8π�Bρ0 (7)

and the Gouy–Chapman length b

b ≡ e

2π�B|σ | , (8)

where �B is a third relevant length in charged soft matter known
as the Bjerrum length3 and reads

�B ≡ e2

4πεkBT
. (9)

The salt-free case can be easily obtained by considering
the limit κb → 0 in equations (5) and (6). Doing so we find

lim
κb→0

ψ(z) = 2kBT

e
ln

[
1 + z/b

] + 2kBT

e
ln
κb

2
. (10)

The corresponding counterion distribution, ρ+(z) = ρ0 exp
[−βeψ(z)] = κ2

8π�B
exp[−βeψ(z)], is then merely given by

ρ+(z) = 1

2π�B

1

(z + b)2
(salt-free). (11)

This formula (11) gives the Gouy–Chapman counterion
distribution. The corresponding plot can be found in figure 2.

To better understand the physical meaning involved in the
approximation (3), we shall make use of the exact so-called
Yvon–Born–Green (YBG) hierarchy [8–10], that reads (taking
into account the translational invariance in the (x, y)-plane)

−�∇1wα(z1) = −qα|σ |
2ε

�ez

−
2∑

β=1

∫
�∇1

[
qαqβ

4πεr12

]
gαβ(r12, z1, z2)ρβ(z2) d3r2. (12)

Equation (12) can be seen as a ‘Newtonian’ version of
the statistical Poisson equation (2). The left-hand side of
equation (12) represents the effective force felt by test ion 1
of species α = ± at the prescribed location �r1 = (x1, y1, z1).

3 The physical interpretation of the Bjerrum length is straightforward: it is
the distance between two elementary charges e that leads to an electrostatic
interaction equal to kBT .

Figure 2. Reduced (Gouy–Chapman) counterion distribution
ρ+(z)(2π�Bb2) = 1

(1+z/b)2
as given by equation (11). It is precisely

at z = b that the cumulated counterions (shadowed region)
half-compensate the charge of the surface. In other words, the
counterion integrated charge at z = b is exactly −σ/2. The
strong Coulomb coupling limit (Moreira–Netz)
ρ+(z)(2π�Bb2) = exp(−z/b) as given by equation (19)
is also shown for direct comparison.

The right-hand side of equation (12) is made up of two
contributions. (i) The first term is merely the Coulomb
interaction between the charged interface and test ion 1. (ii)
The second term involves the interaction between test ion 1
and the remaining solute ions, with gαβ(r12, z1, z2) (where
r12 = |�r1 − �r2|) being the pair distribution function and
ρβ(z2) the local ion density. If the former is approximated by
gαβ(�r1, �r2) ≈ 1 then equation (12) becomes

−�∇1wα(z1)

= −�∇1

[
qα

{
|σ |
2ε

z1 +
2∑

β=1

∫
qβ

4πεr12
ρβ(z2) d3r2

}]

︸ ︷︷ ︸
=qαψ(z1)

, (13)

so that the potential of mean force reduces to the MEP times
the charge, which is precisely the PB approximation. In other
words, the PB theory neglects the (lateral) ion–ion correlations
since the condition gαβ(�r1, �r2) = 1 is required4. It is for this
reason that the PB theory is a mean-field one. Recalling that

gαβ(r12, z1, z2) ≡ ρ
(2)
αβ (r12, z1, z2)

ρα(z1)ρβ(z2)
, (14)

where ρ(2)αβ (r12, z1, z2) is the two-particle density function, one
can equally well provide a geometrical interpretation: the
probability of finding two ions anywhere in the solution is
independent of their relative separation in the PB framework5.

4 Note that the existence of lateral ion–ion correlations (i.e. gαβ (�r1, �r2)−1 �=
0) has two physical origins: (i) electrostatics and (ii) steric effects due to
excluded volume. The latter is implicitly ignored in the PB framework.
5 Clearly, the bare Coulomb forces between all constitutive ions are properly
taken into account in the PB theory, see equation (13). It is the assumption
of a structureless lateral arrangement of the ions that creates the crucial
inconsistency in the PB framework.

3
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2.1.2. Debye–Hückel theory. In general, the strongly
nonlinear PB equation (4) can not be solved analytically,
and its linearized version is usually employed instead. This
latter approach was historically first developed by Debye and
Hückel [6]. When the MEP is everywhere small (i.e., |eψ| <
1), the PB equation reduces to

�ψ = κ2ψ (15)

and the corresponding solution reads

ψ(z) = ψS exp(−κz) = − 2

κb

kBT

e
exp(−κz), (16)

where ψS denotes the surface potential. This result (16) can
be obtained either by directly solving the DH equation (15)
or substituting the small ψS value in the full PB solution
equations (5) and (6).

In order to more deeply understand the physical meaning
of the linear approximation, we shall rewrite the DH
equation (15) in an equivalent integral-equation form. In this
context, it is instructive to use an approximate closure for the
(exact) Ornstein–Zernike equation, as done by McQuarrie for
a bulk electrolyte [11], which leads to the DH description:

h0α(z1) = c0α(z1)︸ ︷︷ ︸
(DH)≈ −αz1/b

+
2∑

β=1

ρβ

∫
h0β(z2) cβα(r12, z1, z2)︸ ︷︷ ︸

(DH)≈ −αβ�B/r12

d3r2

(17)

= c0α(z1)︸ ︷︷ ︸
(DH)≈ −αz1/b

+
2∑

β=1

ρβ

∫
c0β(z2)︸ ︷︷ ︸
(DH)≈ −βz2/b

hβα(r12, z1, z2) d3r2, (18)

where the subscript ‘0’ in equations (17) and (18) stands for
the charged interface, which can be envisioned as a special
particle species at infinite dilution. Thereby, this notation
preserves nicely the analogy with the bulk case. The DH theory
is readily obtained upon assuming that the direct correlation
function is equal to the (sign reversed) reduced pair potential
(i.e., c(r) = −βV (r)), which becomes exact when ρ0�

3
B → 0

and b/�B → ∞. In practice, it is the first line (17) that is used
in fluid theory to solve self-consistently the total correlation

function hi j ≡ gi j − 1 or the PMF via hi j
(DH)≈ −βwi j .6

For the sake of our discussion, however, it is the second
line (18) that turns out to be instructive. Indeed, we see
now that in the DH theory the term gβα(�r1, �r2) is not trivially
unity, since hβα(�r1, �r2) does not vanish in equation (18),7 in
contrast to what happens in the PB situation. Hence ion–
ion correlations are not neglected8. This might seem at

6 Note that in the DH theory the same central approximation (equation (3))
holds. This is to say that in both theories (PB equation and its linearized
version) the PMF is the MEP times the charge.
7 The reason why hβα(�r1, �r2) does/can not vanish in equation (18) is clear:
if one puts hβα(�r1, �r2) = 0 in equation (18), then the MEP would simply

be linear in z (i.e. the bare electrostatic potential kB T
e

z
b stemming from the

charged surface) instead of the expected exponential decay (due to screening)
given by equation (16).
8 Note that McQuarrie used the very same method (equation (18)) to
determine analytically (via Fourier transformation) the DH potential in
spherical geometry [11]. However, in the past, he was not aware of the
relevance of lateral ion–ion correlations, and therefore did not point out this
issue.

first sight counter-intuitive, since the DH theory is based on
the linearization of the PB equation, which ignores lateral
correlations. This being said, in the weak Coulomb coupling
and dilute regime where the DH theory is supposed to be valid,
the deviations from the uncorrelated limit become small.

2.2. Strong Coulomb coupling

2.2.1. Strong Coulomb coupling theories. This last
decade, a remarkable theoretical achievement [12–14] has been
accomplished in the other extreme limit of strong Coulomb
coupling. More specifically, the counterion distribution near
a charged planar wall has been predicted analytically by
Shklovskii [13] and Moreira and Netz [14] in the strong
Coulomb coupling regime (i.e. the Gouy–Chapman problem at
low temperature). A common and essential feature of these two
works is that the counterion distribution decays exponentially
like exp(−z/b). These two approaches will be now briefly
presented.

• Using a field theoretic formulation applied to charged
fluids [15, 16], Moreira and Netz [14] showed that at high
Coulomb coupling (i.e. for  ≡ �B

b 
 1) the counterion
distribution obeys the following exact and elegant limiting
law:

ρ(z)

2π�Bσ 2
s

= exp(−z/b) (19)

with σs = |σ |/e being the number of elementary charges
e per unit area. A plot of equation (19) can be found in
figure 2, where a convenient comparison with the high-
temperature limit (equation (11)) can be made.

• Using a rather different and more intuitive approach,
Shklovskii [17] has applied Wigner crystal (WC)
concepts [18, 19] to the problem of soft charged
matter at an effective low temperature. Using some
heuristic but physically sound arguments, essentially
based on the simple fact that a ‘desorbed’ counterion
from the (triangular) WC counterion layer is correlated
to the hole left behind over the Gouy–Chapman length
b, Shklovskii [17] obtains (up to the here important
prefactor) the same result (equation (19)) as Netz.
Interestingly, if one combines (i) the WC approach that
provides the correct exponential decay exp(−z/b) and
(ii) the contact theorem which imposes the prefactor,
2π�Bσ

2
s [20]9, then one recovers the exact answer (19).

2.2.2. Overcharging and the Thomson problem. As long
as the Coulomb coupling between ions is ‘fairly’ moderate
(which is the case for monovalent ions in aqueous solution),
the PB theory [4, 5, 21, 22] and even the DH one [23]
describe astonishingly well the ion distribution (and hence
the thermodynamical system properties) when compared to
computer simulations [8, 24–30], theories going beyond
the mean-field PB level [31], and even experiments [32].
Nonetheless, as soon as ion–ion correlations become relevant,

9 Note that 2π�Bσ
2
s = 1

2π�Bb2 , so that the PB theory predicts the exact contact

value as well (compare with equation (11)); see figure 2. This is not true,
however, for the DH version.

4
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Figure 3. (a) Snapshot of the ground state structure with Zm = 180 corresponding to N = 90 counterions. Note the local triangular
arrangement on the ‘Thomson sphere’. (b) Electrostatic ground state energy (in units of kBT0 with T0 being the room temperature) as a
function of the number of overcharging counterions n for three different bare charges Zm. The neutral case was chosen as the potential energy
origin, and the curves were produced using the theory of equation (22); compare the text. Data taken from [38].

mean-field theories such as the PB one [33, 34] or
its linearized version (as related above in section 2.1)
cannot explain the experimentally observed relevant effect of
overcharging [35, 36] or negative differential capacity [37].

Naively, one would think that the stable configuration
corresponds to an exact neutralization of the macroion by the
counterions. This assumption is only correct for the case where
the counterions are uniformly smeared out over the surface of
the colloid. Indeed, basic electrostatics show that, for a central
charge Zme < 0 (representing the macroion) and the shell of
radius a of the counterions and (total) charge Z (shell)

c e > 0, the
electrostatic potential energy is given by [38]

E = Zm Z (shell)
c e2

a
+ Z (shell)

c
2
e2

2a
, (CGS) (20)

where the first term describes the interaction between the
central ion and the charged shell and the second one is the
electrostatic energy stored in the shell (i.e. the work done upon
bringing the counterions from infinity to their current location
r = a of the shell). Thereby, the criteria of stability

∂E

∂Z (shell)
c

= 0 and

∂2 E

∂Z (shell)
c

2
= e2/a > 0 ⇒ Z (shell)

c = −Zm

(21)

show that the stable configuration corresponds to an exact
neutralization. In reality, the counterions are discrete
and not smeared out, and when electrostatically bound to
the macroion’s surface they will maximize their separation
such as to minimize the counterion–counterion repulsion.
This problem turns out to be exactly the one that was
addressed a century ago by Thomson [39] (also called the
Thomson sphere or the Thomson problem), who studied the
ground state energy and structure of N (classical) electrons
confined on a sphere (the model of a classical atom). The
Thomson problem has only exact solutions for small N and
some magic numbers (e.g. N = 72 corresponding to the

fullerene structure) [40]. Nonetheless, based on Wigner
crystal ideas [13, 18, 41], a (discrete) analytical model was
developed, which quantitatively accounts for the energy gain
upon adsorbing overcharging counterions10 [38, 42]. More
precisely, the following relation for the energy variation �En

(relative to the globally neutral state characterized by n =
0 overcharging counterion and N = Zm/Zc counterions;
see figure 3 for a typical counterion arrangement) as a
function of the number n of (excess) overcharging Zc-valent
counterions [38] was derived:

�En = − αZ 2
c√

4πa2

[
(N + n)3/2 − N3/2

]+ Z 2
c n2

2a
, (CGS)

(22)
where α (≈2) is a numerical geometrical prefactor that was
determined by simulations (deduced from the value of�E1).11

The first, attractive, term in equation (22) stems basically
from the interaction between a counterion and its oppositely
charged Wigner–Seitz cell. Energy profiles of equation (22)
are sketched in figure 3, where one can see that these analytical
predictions are pretty robust. This simple approach to the
understanding of overcharging via the Thomson problem,
Wigner crystal concept and computer simulations has triggered
a new interest in the community [43–46] for the Thomson
problem applied to soft matter.

We now consider the problem of a pair of macroions.
In [42], it was shown that two equally charged spheres are
likely to be overcharged and undercharged in the strong
Coulomb coupling regime, leading to a metastable ionized
state that yields a strong long-ranged attraction due to a
monopolar contribution. All the mechanisms so far reported
in the literature can only explain short-ranged like-charge
attraction [15, 17, 47–57].

10 To achieve overcharging in nature one should normally add salt to the system
to ensure global electroneutrality. For the sake of simplicity, however, we will
consider non-neutral systems because they can, on a very simple basis, explain
why colloids prefer to be overcharged.
11 Note that in the case of vanishing curvature (i.e. a/dc → ∞ where dc is the
mean distance between counterions) our expression becomes exact since the
planar WC limit is recovered for which α = 1.960516 · · · [18].

5
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(a) (b)

Figure 4. Computer simulation snapshots of counterion ground state configurations. The discrete colloidal surface charges are in white. The
counterions are in (dark) blue. (a) ‘Low’ and (b) ‘high’ surface charge densities are shown. Data taken from [61].

To further rationalize this phenomenon and the stability of
ionized states [38, 58], two charged spheres of the same radius
a, carrying the same electric sign of charge but characterized
by a charge ratio ρZ such that 0 < ρZ ≡ ZB/ZA � 1,
were considered. Starting from a macroion pair where each
macroion is neutralized by its counterions, the process where
a counterion is transfered from macroion B (low bare charge)
to macroion A (high bare charge) was investigated [38, 58].
Having demonstrated that the ability of a macroion to become
overcharged increases with growing (bare) surface charge
density σ (or the bare charge at fixed radius), it is clear that
this counterion-transfer process will be energetically favorable
below a certain value of ρZ . This theoretical prediction shows
that the criterion for stable ionized states (the latter also called
by other authors [45, 59] ‘auto-ionization’) is

√
NA − √

NB � 1 (23)

(with NA/B = ZA/B/Zc being the number of counterions of
macroion A/B), which reflects the correlation–hole energy
difference between the two macroions (at identical radii). In
particular, it was demonstrated that the higher the charge-
asymmetry (i.e. ρZ ) the more stable the ionized state and
concomitantly the higher the degree of ionization [38, 58].

The main findings related to this work [38, 42, 58] can be
summarized as follows.

• The ground state of a charged sphere is always
overcharged due to counterion correlations.

• At finite temperature and in the strong Coulomb regime
(accessible with multivalent aqueous ions), colloids
having different bare surface charge density auto-ionize
due to counterion correlations.

2.3. Discretely charged surfaces

The structural (i.e. bare) charge of spherical macroions is
usually modeled by a central charge, which, by virtue of
Gauss’ law, is equivalent to a uniformly charged macroion
surface as far as the electrostatic field (or potential) outside the
sphere is concerned. However, in nature the charges on the
colloidal surface are discrete (exactly as the counterions are)

and localized; see figure 4. Thus, a natural question that arises
is: why and how does the counterion distribution depend on
the way the structural charge of the macroion is represented
(i.e. uniformly charged or discrete charges on its surface)? It is
precisely this problem that was addressed in [60, 61].

Why is the counterion distribution sensitive to the choice
of the representation of the macroion charge (discrete versus
uniform)? This question can be best answered by looking at
and comparing the (intrinsic) electrostatic potentials generated
by discretely and uniformly charged macroions (without
counterions) [60]. It was demonstrated in [60] that the
electrostatic potential at a reduced distance r/a from the sphere
(where a stands for the distance of closest approach between
an external unit test-charge and the macroion surface) may be
significantly different depending on the nature of the macroion
charge. In particular, we show that the higher the bare surface
charge (i.e. the closer we get to a uniform charge distribution)
the shorter the correlation length (typically rc ∼ √

1/σs)
between the discrete surface charges, as intuitively expected.

More specifically, the contact potential is sensitive to the
localization of the discrete charges, leading to a pronounced
depth in their vicinity. All these features, solely based on the
spatial behavior of the electrostatic potential stemming from
the bare macroion, indicate that the counterion distribution
should be much more complicated for a discrete macroion
surface charge distribution than for the uniform case.

We now come to the other important question: how is the
counterion distribution modified when introducing the more
realistic discrete macroion’s surface charge distribution? This
point is thoroughly addressed in [61], where two regimes are
considered: ground state (T = 0) and finite temperatures. The
corresponding relevant findings [60, 61] can be summed up as
follows.

• At zero temperature, the counterion (surface) structure
possesses greater order the higher the reduced surface
charge density σs and/or counterion valence Zc is.

• When overcharging comes into play several scenarios
occur: (i) at large σs, the overcharging is nearly the
same as that obtained at a uniformly charged macroion’s
surface. (ii) At low σs and for monovalent counterions,
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overcharging is always weaker for discrete macroion
charge distribution, due to the ion-pairing frustration
for the excess counterions. (iii) At low σs and for
highly multivalent counterions, overcharging can even be
stronger in the discrete case due to ion-pairing.

• At finite temperature (in aqueous solutions), the volume
counterion distribution is only affected for low σs and
multivalent counterions.

The effect of surface charge discretization was later
examined for different geometries by several groups [62–68].

3. The crucial role of excluded volume

3.1. Effect of electrolyte volume fraction

So far, we have had a pretty good understanding of the physics
involved in the counterion distribution for salt-free systems
where excluded volume effects are irrelevant. The situation
becomes much more complicated at finite salt concentrations
in aqueous solutions (i.e. water at room temperature in the
presence of added salt), where the Coulomb coupling is
(rather) weak, especially for monovalent ions. Thereby, a
direct application of Wigner crystal ideas is not straightforward
enough to account for the unexpected overcharging at weak
Coulomb coupling that was reported theoretically [69–72], but
unexplained, for monovalent salt ions of finite size.

Molecular dynamics computer simulations as well as
integral-equation theory [73] were employed to identify the
mechanisms that govern counterion ordering and overcharging
in this weak Coulomb coupling regime. These mechanisms are
as follows.

• Increasing the electrolyte particle size (at given salt
concentration) decreases the available volume of the
fluid (or equivalently its entropy) which favors ion–ion
correlations.

• The interface provided by the macroion causes an
increase of the ion density close to it, and concomitantly
enhances the lateral ordering (similar to the prefreezing
phenomenon in neutral inhomogeneous fluids).

• Surface lateral ordering and (weak) Coulomb coupling
lead to overcharging. These mechanisms are enhanced
when dealing with confinement [74, 75].

3.2. Macroion adsorption at planar substrates

Excluded volume effects coupled to electrostatic interactions
can also lead to counter-intuitive phenomena in the process
of macroion adsorption. A description of the model set-up
is sketched in figure 5. For instance, Jimenez-Ángeles and
Lozada-Cassou [76] showed, using integral-equation theory,
that for moderately (attractive) charged substrates, a film
of coions first builds up. The electrostatic consequence is
that in the direct vicinity of the surface of the substrate its
charge becomes amplified (i.e. surface charge amplification)12.

12 Jimenez-Ángeles and Lozada-Cassou [76] called the phenomenon of surface
charge amplification ‘overcharging’, in contrast to charge reversal that occurs
with counterions. Note that charge amplification as well as charge reversal
have also been recently reported with the modified Gouy–Chapman theory
in [77].

Figure 5. Schematic view of the electrostatic model for macroions
near an oppositely charged interface. The macroions are
characterized by a distance of closest approach z = a to the charged
surface, leading to two screening strengths κ0 and κ for 0 < z < a
and z > a, respectively.

The driving force of this effect is due to the macroion–ion
attractive correlations13. This effect was overlooked in the
past, because the authors neglected either the finite size of
the macroion [78] or the spatial distribution of the small salt
ions [79].

Recently, this problem was revisited [80] by using
a simple analytical model based on the Debye–Hückel
approximation but taking into account the finite size of the
macroion via its distance of closest approach a (i.e. its radius)
to the wall (see figure 5 as well). Two regimes were specifically
examined [80]: the strong and weak screening regimes, which
are now briefly described.

• In the strong screening regime (κ0a 
 1) the14 wall–
macroion attractive interaction is exclusively governed by
the screening contrast κ0/κ .15 More precisely, it was
shown that the contact potential of interaction Um is
merely given by

βUm � 1 − κ

κ0
. (24)

• In the weak screening regime (κ0a � 1) and for
sufficiently small surface charge density ( κb

2Zm

 1), the

13 The negative counterions of the ‘positively charged macroions correspond
to the coions of the planar substrate. Thereby, electrostatic correlations tend to
localize the counterions of the macroions over its whole surface in a uniform
manner. Hence, as long as the strength of the surface charge density of the
oppositely charged substrate is low enough, a finite number of counterions of
the macroions should stay in the vicinity of the interface (see figure 5), leading
to a surface charge amplification.
14 κ0 stands for the screening strength stemming uniquely from the little ions;
see also figure 5.
15 κ stands for the total screening strength stemming from all the ions present
in the solution (also including the macroions); see also figure 5.

7



J. Phys.: Condens. Matter 21 (2009) 113102 Topical Review

θ/π

σ po
l(θ

)/σ
(ο

)
po

l

R = 8d
R = 9d 
R = 10d

a

macroion

++
+++

+
+

+

+

++
+++

+
+

+
R

εm
θ

(b)
(a)

0.2 0.4 0.6 0.8 10

1

–0.2

0

0.2

0.4

0.6

0.8

–
–

–
– –––

–

–
–

–
–

–
–

–

––– – – – ––

solvent
solvε

q
d

Figure 6. (a) Model for a dielectric sphere (colloid) of dielectric constant εm embedded in an infinite medium (the solvent) characterized by a
different dielectric constant εsolv. A test positive charge (q) is located near the boundary outside the spherical particle at a radial distance R.
The resulting induced surface polarization charges are also illustrated for the case where εsolv > εm. Note that the global induced net charge
vanishes. This is a two-dimensional representation of the three-dimensional system. (b) Polar profiles, as obtained from equation (26), of the
surface density of polarization charge σ (sph)

pol (θ) in units of σ (0)pol = q
4πεsolvd2 for different radial distances R of the test-charge q with εsolv = 80,

εm = 2 and a = 7.5d .

reduced electric field16 at contact follows this simple law:

E∗(a) � − κb

2Zm

(
1 − κ2

0

κ2

)
κa. (25)

This equation (25) tells us that surface charge amplifica-
tion increases with growing colloidal particle size a and
increasing Gouy–Chapman length b (i.e. decreasing σs).

4. Image charges in spherical geometry

In a typical experimental set-up, the dielectric constant of a
macroion is rather low (εm ≈ 2–5), which is much smaller
than that of its embedding solvent (e.g., for water εsolv ≈ 80),
leading to a high dielectric contrast, �ε ≡ εsolv−εm

εsolv+εm
, at the

interface. It turns out that for a perfect planar substrate (which
can be envisioned as a colloid of vanishing curvature) there
is an elegant analytical solution for the electric field. More
precisely, the electric field generated by the induced surface
charge at the interface positioned at z = 0 (due to the presence
of a point-like ion of charge q located at z = �) can be exactly
obtained by a ‘fictive’ point-like charge qim = �εq located
at the mirror position z = −� [81]. This feature corresponds
to the so-called method of image charges. The inclusion of
such image forces for the case of an electrolyte close to a
planar dielectric interface was studied in the past by computer
simulations [62, 82–84], integral-equation formalisms [85, 86],
mean-field [78, 87–90] and strong-coupling [62, 91] theories.
As far as the cylindrical case [92–94] is concerned, there is no
simple ‘image charge’ picture.

The problem of the dielectric discontinuity in spherical
geometry is, already at the level of a single ion interacting with
a dielectric (neutral) sphere, considerably more complicated
than its planar counterpart. Indeed, if we want to reformulate

16 The reduced electric field is defined as E∗(z) ≡ − b
2

e
kB T

dψ(z)
dz such that at

the interface z = 0 we have E∗(0) = −1.

the problem in terms of image charges, one would need
an infinite number of image charges, thus making its usage
much less attractive than in the planar case. Due to this
difficulty, the problem of image charges in spherical geometry
is sparsely studied in soft matter. Nevertheless, 20 years ago,
Linse studied the counterion distribution with image forces
around spherical charged micelles by means of Monte Carlo
simulations [95]. In his work [95], Linse used a two-image
charge approximation instead of the full continuous image
charge distribution. The conclusions of his study remain
qualitatively correct. The dielectric response of a dipolar fluid
confined to a spherical cavity was recently addressed by Blaak
and Hansen using MD simulations [96].

In the field of image forces in spherical geometry, exact
results for the electrostatics of an ion interacting with a
dielectric sphere (see figure 6 for the model geometry) were
reported [97]. Furthermore, Monte Carlo simulations were
performed to elucidate the behavior of an electrolyte near a
spherical macroion at finite dielectric contrast, where image
forces are properly taken into account [97]. The main results
are as follows [97].

• Single ion. A compact and exact analytical expression has
been derived for the polar profile of the induced surface
charge:

σpol(θ) = q(εsolv − εm)

4πεsolv R2

∞∑

l=1

( a

R

)l−1

× (2l + 1)l

εsolv(l + 1)+ εml
Pl(cos θ), (26)

where q is a test ion at a radial distance R (see figure 6)
and Pl designates Legendre polynomials of order l. The
strength as well as the range of image forces in spherical
geometry are considerably smaller than at vanishing
curvature, due to auto-screening.
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• Electrolyte. For aqueous monovalent ions the (effective)
image force is basically equal to the self-image one
(i.e. the interaction between an ion and its own image).
However, when dealing with multivalent counterions, the
lateral image–counterion correlations can significantly
affect the (local) counterion density and, as a major effect,
they screen the self-image repulsion. Upon adding salt, it
was shown that the strength of the image forces induced
by the coions is marginal. Besides, overcharging is robust
against image forces.

Very recently, Reščič and Linse extended [98] the one-
colloid problem to the two-colloid interaction problem with a
dielectric discontinuity. Using a cylindrical cell model and MC
simulations, they found (i) weaker counterion accumulation
at the macroion’s surfaces, (ii) stronger effective repulsion at
moderate Coulomb coupling, and (iii) a less attractive effective
force at strong Coulomb coupling. These findings are fully
consistent with the one-colloid features just discussed above.

5. Polyelectrolyte adsorption and multilayers

Polyelectrolytes (PEs) are polymers containing a variable
(usually large) number of ionizable monomers along the
chemical backbone. Once dissolved in a suitable polar solvent
such as water, the ion pairs dissociate by creating a charged
chain with dissolved counterions. PEs represent a broad and
interesting class of materials that have attracted increasing
attention in the scientific community. PEs have applications
in modern technology as well as in biology, since virtually all
proteins, as well as DNA, are charged. The adsorption of PEs
onto surfaces is an important process, since they modify the
physico-chemical properties of the surface. From a theoretical
point of view, charged polymers (in bulk or adsorbed on
surfaces) are much less understood [99, 100] than neutral
ones [101]. One of the main difficulties is the addition of new
length scales set by the tremendously long-ranged Coulomb
interaction. Hence, the study of adsorption of PEs is motivated
by fundamental aspects as well as practical ones.

5.1. Polyelectrolyte–colloid complexation

5.1.1. Oppositely charged spherical substrates. The works
related to the interaction between PEs and oppositely charged
spheres are briefly reviewed here17. The complexation of
flexible PEs with oppositely charged macroions is a relevant
process in biology [106]. For instance, a nucleosome
can be seen as an electrostatic binding between DNA and
histone proteins, where the latter can be envisioned as
charged spheres18. Many theoreticians [104, 107–117] have
investigated these types of objects in order to understand the
electrostatics governing these structures. Two very relevant
results are (i) the possible overcharging of the sphere by long
PEs and (ii) a strong wrapping of PEs about the sphere (see

17 The reader can also look at recent reviews [103–105] in this field for more
details.
18 We are aware that this assumption is at best a caricature of a real system
(provided that non-specific interactions are dominant). Nonetheless, from
an electrostatic viewpoint, we think that the qualitative features should be
captured.

(a)

Figure 7. A computer simulation snapshot of PE–colloid
complexation (tennis-ball-like conformation) [102].

figure 7 for an example). A considerable effort has also been
provided by simulators [102, 118–129] in the last 12 years.

Some relevant findings in this field can be summarized as
follows.

• The effect of chain stiffness, which was first systematically
studied by Wallin and Linse [118] by MC simulations,
is an important key controlling PE adsorption. They
showed that the lower the chain stiffness, the higher
the PE adsorption, leading to overcharging of the
charged sphere by the PE. Stoll and Chodanowski [126],
using MC simulation as well but employing electrostatic
Yukawa potentials, showed that, upon increasing the chain
stiffness, solenoid conformations are obtained as predicted
analytically by Nguyen and Shklovskii [113].

• The effect of chain length has also been addressed (by
means of computer simulations) in the past [120, 124, 125,
127]. For a large chain/sphere size ratio, Chodanowski
and Stoll [124] found, for fully flexible chains, that only
a marginal portion of the PE gets adsorbed to the sphere,
and the rest of the chain consists of extended tails. At
a ‘moderate’ chain/sphere size ratio [124], they found
strong PE collapse into a tennis-ball-like structure (as
illustrated in figure 7). Considering both the effects
of chain length and the chain stiffness, Akinchina and
Linse [127] reported a rich phase behavior: tennis-ball-
like, solenoid, multiloop (also called rosette [106]), single
loop, as well as ‘U’-shaped conformations. Note that there
is remarkable agreement with the rosette structure found
theoretically by Schiessel et al [130].

• The effect of the discrete nature of the protein charge
distribution was addressed by Carlsson et al [131]. In their
MC simulations [131], they found that complexation can
be stronger with a discrete protein charge distribution (in
agreement with the ideas discussed in section 2.3).

• Multisphere complexation involving many charged spheres
bridged via oppositely charged PEs were investigated by
Jonsson and Linse [122, 123] by means of MC sim-
ulations. The effect of linear chain charge density,
chain length, and macroion charge valency was addressed
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in [122]. Interestingly, at prescribed PE linear charge den-
sity, the authors found that complexation gets stronger
upon increasing the chain length [122]. The effect of chain
flexibility was studied in [123], and it was found that the
macroion arrangement gradually becomes more linear and
ordered along the (long) chain when its stiffness is in-
creased.

5.1.2. Like-charge complexation. Whereas many studies
have been devoted to the case of chain–sphere complexation
where the two charged bodies are oppositely charged, as we
just saw, much less is known concerning the problem of like-
charge sphere–PE complexation.

In [132, 133], the complexation between a sphere and
a long flexible PE (both negatively charged) was discussed.
Whereas like-charge attraction in the strong Coulomb coupling
limit is expected (and therefore complexation too), new and
rather unexpected chain conformations are reported. Different
coupling regimes as well as the influence of the linear charge
density, f , of the PE chain were considered in [133]. The
relevant conclusions are as follows.

• At strong coupling the PE chain is always adsorbed as a
flat structure, whose conformation strongly depends on f .
At high f , the conformation consists of densely packed
monomers following a Hamiltonian walk. Upon reducing
f the chain tends to spread more and more over the
particle surface. These findings could have some relevance
for organic solutions.

• Under aqueous conditions, complexation can be obtained
with multivalent counterions and for high enough values
of f . In contrast to the strong-coupling case, the formation
of loops was reported.

5.2. Polyelectrolyte adsorption at planar surfaces

The reader who wants a more detailed account of the
field of PE adsorption at surfaces is invited to consult
the recent reviews of Netz and Andelman [134] and of
Dobrynin and Rubinstein [135]. In this section, we would
like to propose some basic ideas and features supported
by MC simulations about the adsorption of highly charged
polyelectrolytes onto oppositely charged planar surfaces in a
salt-free environment [136–138]. Flexible [136, 137] as well
as rod-like [138] PEs are now discussed.

5.2.1. Role of entropy. There is a simple and clear entropic
mechanism that influences multi-polymer-chain adsorption that
we discuss first. It can be best understood by recalling
the counterion release effect: the adsorption process of one
polyion of valence Z typically leads to the release into solution
of Z (initially adsorbed) surface monovalent counterions,
which is ‘electrostatically invariant’ but entropically (highly)
favorable. This very same effect is also the reason why
longer chains can better adsorb at a prescribed monomer
density. Indeed, at a prescribed monomer density, increasing
the chain length Nm involves19 decreasing the number of

19 Rigorously, Nm represents the number of monomers per chain
corresponding experimentally to the polymerization degree.

chains. Thereby, the resulting (bulk) entropy stemming from
the PE chains becomes reduced accordingly. This entropic
mechanism linked to the chain length at a prescribed monomer
density is henceforth referred to as polymerization-induced
adsorption.

5.2.2. Flexible chains [136]. When no image forces are
present (i.e., �ε = 0), it was found that the monomer density
profile, n(z), decays monotonically for very short chains even
near contact; see figure 8(a). Longer chains experience a short-
ranged repulsion in the vicinity of the charged wall (z � d)
due to chain-entropy effects20.

When image forces come into play, (partial) monomer
desorption sets in, whose strength increases with growing
chain length Nm. This feature is due to the repulsive image–
chain interaction that scales like N2

m, whereas the attractive
Wigner crystal correlations21 scale only like N3/2

m .
The fraction of charge σ ∗(z) of the fluid as a function of

monomer–wall separation, z, is another interesting quantity to
characterize the adsorption behavior. At�ε = 0, overcharging
(as signaled by σ ∗(z) > 1) occurs as soon as chains are longer
than dimers; see figure 4(a) in [136]. In the presence of image
forces, the strength of the overcharging is nearly identical to
that obtained without image forces at �ε = 0 (compare with
figure 4(a) in [137]). Thereby, the main effect of image charges
is (i) to decrease the fraction of charge σ ∗(z) near contact
(z � 1.2a) upon growing Nm and (ii) to (slightly) shift the
position of the maximum of σ ∗(z) to larger z.

5.2.3. Rigid chains [138]. Dimers exhibit a monotonic
behavior for n(z) that is similar to point-like ions. For longer
chains there exists a small monomer depletion near the charged
wall for an intermediate regime of Nm; see figure 8(a). At
high enough Nm, n(z) reveals again a monotonic behavior; see
figure 1(a) in [138]. This interesting effect is the result of two
antagonistic entropy driving forces, namely, (i) chain entropy
and (ii) polymerization-induced adsorption. Electrostatic
chain–chain correlations, whose strength grows in a non-trivial
way with Nm,22 also favor chain adsorption. Figure 8(a) clearly
shows that the adsorption of rigid PEs is much stronger than
that of flexible ones. This feature is also detectable in the
snapshots; see figures 8(b) and (c).

Upon polarizing the interface, it is found that the degree of
adsorption is considerably reduced. Nonetheless, a comparison
with the flexible case [137] shows that the values at contact at
finite�ε are quite similar.

20 The chain-entropy effect here is merely due to the much lower number of
available conformations in the adsorbed state. It should be distinguished from
that previously discussed in section 5.2.1.
21 When charged polymers are adsorbed on the surface, they also tend to build
a Wigner crystal due to the strong mutual Coulomb interchain repulsion. The
higher the chain length Nm (i.e. the length of the chain) the stronger the effect.
At prescribed reduced surface charge density σs and monomer concentration,
this leads to a 2D plasma term (i.e. interchain repulsion reduced by thermal
energy) that roughly varies like N3/2

m , as is the case for point-like multivalent
ions.
22 Due to the strong extension of the chain, it is no longer suitable to use the
point-like and/or spherical polyion picture leading to the WC term in N3/2

m .
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Figure 8. (a) Profiles of the monomer density n(z) for various chain lengths Nm: flexible versus rigid chains [138]. Snapshots at Nm = 8 for
(b) flexible and (c) rigid chains.

5.2.4. Summary. To sum up, MC simulations [136–138]
show us the following.

• Without a dielectric discontinuity (�ε = 0), flexible PE
chains experience short-ranged repulsion near the charged
substrate due to chain-entropy effects. In contrast, rigid
PE chains are more strongly adsorbed (due to a weaker
loss of chain-entropy) and, when long enough, experience
a purely effective attraction.

• Image forces lower the degree of adsorption for flexible
and rigid PE chains. However, the overcharging of the
substrate by the PEs is robust (irrespective of the chain
flexibility) against image forces.

5.3. Polyelectrolyte multilayering

PE multilayer thin films are often obtained using a so-
called layer-by-layer deposition technique [139, 140]: a
(say negatively) charged substrate is alternatively exposed
to a polycation (PC) solution and a polyanion (PA) one.
This method and the resulting materials have a fantastic
potential of application in technology, e.g. biosensing [141],
catalysis [142], nonlinear optical devices [143], nanoparticle
coating [144], etc.

From the theoretical side the literature is rather poor.
However, a few analytical works about PE multilayers
on charged planar surfaces based on different levels of
approximation are available [145–147]. Solis and Olvera
de la Cruz considered the conditions under which the
spontaneous formation of polyelectrolyte layered structures
can be induced by a charged wall [145]. Based on Debye–
Hückel approximations for the electrostatic interactions, but
including some lateral correlations by the consideration of
given adsorbed PE structures, Netz and Joanny [146] found
a remarkable stability of the (semi-flexible) PE multilayers
supported by scaling laws. For weakly charged flexible
polyelectrolytes at high ionic strength, qualitative agreements

between theory [147], also based on scaling laws, and
experimental observations [148] (such as the predicted
thickness and net charge of the PE multilayer) were achieved.
More recently, Shafir and Andelman, using mean-field theory,
pointed out the relevant role of a specific strong short-range
interaction between PAs and PCs.

A tremendous difficulty in PE multilayering is the strong
electrostatic correlations between PCs and PAs, which are hard
to satisfactorily take into account in (modified) mean-field
theories. In this respect, computer simulations are of great
help. The first simulation model for PE multilayering was
developed in [102]. Later, Panchagnula et al performed similar
computer simulations [149], where the dynamical aspect
was more emphasized. Several types of substrate geometry
were considered, from spherical particles [102, 149, 150]
to planar substrates [151, 152] via cylindrical ones [153].
Relevant simulation findings for spherical [102] and planar
substrates [151] will now be described.

5.3.1. Polyelectrolyte multilayering at spherical substrates.
From the study in [102] concerning substrates with finite
radii (i.e. charged spheres), one discovers that non-electrostatic
forces are required to obtain (true) PE multilayers. More
precisely, an additional short-ranged van der Waals-like
attraction (whose strength is characterized by its value at
contact, χvdw, in units of kBT ) between the substrate’s surface
and the (monomers of the) oppositely charged chains was
considered. The PE structure results then from a complicated
interplay between (i) PC–PA strong attraction (favoring a
collapse into a compact globular state) and (ii) PE–substrate
correlations (favoring flat adsorption and wrapping23 around
the sphere). Briefly, the main findings in [102] are as follows.

23 Note that the wrapping of the chain(s) around the colloid is peculiar to
spherical substrates. Also it should be noted that wrapping is governed by
the repulsive interaction between the turns of a chain [41].
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Figure 9. Typical configurations for one PC (in white) and one PA (in (dark) red) adsorbed onto the negatively charged colloid at different
χvdw-couplings. (a) χvdw = 0, (b) χvdw = 1, (c) χvdw = 2, (d) χvdw = 3, (e) χvdw = 5. Note the remarkable structural change occurring at
χvdw = 2. The small monovalent counterions (anions and cations) are omitted for clarity.

• Flat bilayer structures, involving two long oppositely
charged chains, arise only for large enough χvdw. At low
χvdw, the strong driving PA–PC force leads to PE globular
structures; see figure 9.

• Stable and flat multilayers are only obtainable at large
enough χvdw. In a purely electrostatic regime (χvdw = 0)
PE globules are formed, preventing a uniform coverage of
the surface; see figure 10.

• Short chains are not suitable candidates for PE
multilayers, due to (i) the weaker effect of polymerization
adsorption and (ii) reduced chain–chain correlations.

5.3.2. Planar substrates. PE multilayering onto planar
substrates was investigated in [151, 152, 154]. The zero-
curvature case differs qualitatively from the spherical one. First
the intrinsic electric field is higher in the former case24. Second
the chain wrapping is no longer present at zero curvature.
Consequently, at a given surface charge density, we expect a
stronger PE layering. The important results can be formulated
as follows.

• As with spherical substrates, the relevance of short-ranged
non-electrostatic forces is also demonstrated here; see
figure 11. Flat multilayers cannot be achieved with solely
electrostatic forces.

• The formation of islands (i.e. clusters of PC–PA chains)
on a substrate is reported [151] and qualitatively confirms

24 At zero curvature we have ψ ∼ r , in contrast to finite curvature where
ψ ∼ 1/r .

the experimental observations of the early stages of PE
deposition (one or two bilayers) [155, 156].

6. Confined crystalline colloids

It is well known from solid state studies that strongly confined
(i.e. quasi-two-dimensional) systems exhibit properties and
a phase behavior that may drastically differ from those in
the bulk [157]. This feature is also apparent in colloidal
systems, and these materials represent ideal model systems
to analyze (experimentally as well as theoretically) and
to understand confinement effects on a mesoscopic scale
corresponding to the interparticle distance. Using external
fields, a colloidal system can be prepared in a controlled way
into prescribed equilibrium and non-equilibrium states [158].
For instance, in equilibrium, solidification near interfaces
(provided by a substrate or a large ‘impurity’) can occur under
thermodynamic conditions where the bulk is still fluid (so-
called prefreezing). In non-equilibrium, a wall may act as
a center of heterogeneous nucleation (favored by the excess
surface energy of the wall/nucleus interface) and thus initiate
crystal growth. Most of our experimental knowledge of
freezing in a confining slit-like geometry is based on real-space
measurements of mesoscopic model systems such as charged
colloidal suspensions between glass plates [159, 160].

In this section, different relevant achievements in the field
of confined charged colloidal crystals are discussed.

12
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Figure 10. Typical equilibrium configurations for 12 PEs (six PCs in white and six PAs in (dark) red) adsorbed onto the negatively charged
colloid at different χvdw-couplings. Small counterions (anions and cations) are omitted for clarity. (a) χvdw = 0; (b) χvdw = 3.
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Figure 11. Profiles of monomer density n±(z) for oppositely charged PEs adsorbed onto a negatively charged planar substrate.
χvdw-couplings. (a) χvdw = 0, (b) χvdw = 5 [151]. The snapshots shown correspond to a chain length Nm = 20.

6.1. Two-dimensional dipolar mixtures

Two-dimensional colloidal systems can be achieved for
instance via sedimentation and trapping at the air/water
interface [161, 162]. Applying strong external field, all the
dipolar moments align in the direction of the external field,
leading to a purely repulsive pair interaction that scales like

Vdip(r) ∝ m1m2

r 3
, (27)

where m1 and m2 stand for the induced dipolar moments of
particles 1 and 2, respectively25.

25 Note that in the experimental situations, one has often to deal with magnetic
colloidal particles (so-called ferrofluids). However electric dipoles are also
realizable [163]. This being said, regardless of the nature of the dipolar
moment (i.e. magnetic or electric), the same pair interaction (27) prevails.
Hence results on (super)magnetic particles also fall within the scope of this
review.
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Figure 12. (a) Super-paramagnetic colloidal particles confined at a water/air interface due to gravity. An external magnetic field H
perpendicular to the interface induces a magnetic moment �m in each bead leading to a repulsive dipolar interaction; see equation (27).
(b) Micrograph showing three touching square-latticed grains at low reduced temperature with a global composition
X = nB/(nB + nA) ≈ 45% (with nA and nB denoting the area density of the big and small particles, respectively) and a reduced moment
mB/mA ≈ 10%. Data taken from [162].
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Figure 13. The phase diagram in the (m, X)-plane at T = 0. Three important phases are shown: S(AB), T(A2 B) and T(AB2). The reader
can find more details about the other structures in [164]. Data taken from [164].

Whereas the one-component situation trivially yields a tri-
angular lattice, the binary mixture situation provides a very rich
phase behavior [164]. This feature can be conveniently ex-
ploited for potential technological applications: optical band-
gap materials (so-called photonic crystals) [165], molecular
sieves [166], nano-filters with prescribed porosity [167], etc.
There have been recent advances in this field that will be con-
cisely explained here.

Two-dimensional binary mixtures made up of two types
of dipolar particles ((i) big particles with a large dipolar
moment (species A) and (ii) small particles with a small dipolar
moment (species B)) were investigated experimentally [162].
The corresponding set-up and a representative snapshot of the
microstructure are shown in figure 12. A remarkable feature
is the stability of the square phase at strong dipolar asymmetry
(mB/mA ≈ 10%).

On the theoretical side, the phase behavior of such a
binary dipolar mixture at zero temperature was studied using
lattice sums [164]. The relevant reduced parameters are (i) the
reduced dipolar moment m = mB/mA and (ii) the composition
X = nB/(nA + nB). The resulting phase diagram is shown in
figure 13. The main results are as follows.

• The phase diagram qualitatively differs from that of hard
disks [168]. For low dipolar asymmetry m � 0.5 a
stable mixture T(AB2) sets in (see figure 13) in contrast
to the case of hard-disk mixtures, where no mixture is
predicted at low size asymmetry [168]. The stability
of this phase T(AB2) was also reported in molecular
dynamics simulations [169]. At even smaller dipolar
asymmetry m � 0.88, an additional (globally triangular)
phase mixture T(A2 B) is stable; see figure 13.

• The stability of the square phase S(AB) (see figure 13)
is in good qualitative agreement with the experimental
findings in [162], where the dominance of the square phase
is also reported (see figure 12), as previously mentioned.

6.2. Crystalline colloidal bilayers

Crystalline bilayers made up of charged particles have been
intensively studied in recent years in the soft matter colloid
community [170–172] as well as in the solid state physics
(classical [173–177] and non-classical electrons [178–180])
and dusty plasma communities [181, 182].

The effective interaction between these constitutive
mesoscopic macroions is neither hard-sphere-like nor purely
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Coulombic, but it is rather described by an intermediate
screened Coulomb (also called Yukawa or DLVO (Derjaguin–
Landau–Verwey–Overbeek) [183, 184]) potential due to the
screening mediated by the additional microions present in the
system. The screening strength can be tuned by varying the
microion concentration: for colloidal systems, salt ions can
be conveniently added to the aqueous suspension; the dusty
plasma, on the other hand, consists of electrons and impurity
ions.

6.2.1. Equilibrium. The equilibrium phase diagram at
zero temperature of crystalline bilayers was investigated
theoretically in [170]. The constitutive (point-like) particles
interact via a Yukawa pair potential of the form

Vyuk(r) = V0
exp(−κr)

κr
, (28)

where V0 sets the energy scale26. The choice of this potential
is motivated by the experimental model systems described
above. The crystalline bilayer consists of two (identical)
layers containing in total N particles in the (x, y) plane. The
corresponding (total) surface density ρ is then given by N/A,
with A being the (macroscopic) layer area. The distance D,
separating the two layers in the z-direction, is prescribed by an
(implicit) external potential confining the system.

The zero-temperature phase behavior is fully determined
by two dimensionless parameters, namely the reduced layer
density, η = ρD2/2, and the reduced screening strength,
λ = κD. Using a straightforward lattice sum technique,
the phase diagram was calculated for arbitrary λ and η; see
figure 14.27 The most interesting findings [170] are as follows.

• Whereas the two known extreme limits of zero
[173, 175, 176] and infinite [187–189] screening strength
λ are recovered by lattice sum calculations [170], it is
demonstrated that, at intermediate λ, the phase behavior
is strikingly different from a simple interpolation between
these two limits. First, there is a first-order coexistence
between two different staggered rhombic lattices (IVA
and IVB in figure 14) differing in their relative shift of
the two unit cells. Second, the staggered rhombic phase
IVA exhibits a novel reentrant effect for fixed density
and varied screening length; see figure 14. Depending
on the density, the reentrant transition can proceed via
a staggered square III or a staggered triangular solid
V including even a double reentrant transition of the
rhombic phase IVA, see figure 14.

26 Note that in the ground state, i.e. at zero temperature, the value of V0 is
irrelevant. Nonetheless, in experimental situations, the energy amplitude V0 =
Z2κ

exp(2κa)
4πε(1+κa)2

scales like the square of the ‘effective’ charge Z [185, 186].

The latter is typically of the order of 100–100 000 elementary charges such
that V (r = d) can be much larger than kBT at average interparticle distances
(d), justifying formally our zero-temperature calculations.
27 Note that the ground state at vanishing screening λ → 0 always corresponds
to bilayers. Indeed, two equally charged walls do not generate any electric
field within the slit, and consequently they do not alter the stable Wigner
crystal structure obtained at any other surface charge density (including neutral
walls). Thereby, if one considers the special case of two walls corresponding
to neutralizing backgrounds, the ground state is always a bilayer. At finite
screening λ �= 0, however, the situation is more complicated, and multilayers
(i.e. beyond bilayers) are stable at high enough density η.
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Figure 14. The hard sphere limit λ → ∞ is sketched on top. The
dashed (solid) lines denote continuous (discontinuous) transitions.
The filled region corresponds to the coexistence domain of phases IV
and V. The vertical arrow indicates the double reentrant behavior of
phase IVA. The insets show the lattice geometries, where the filled
(open) circles correspond to the lower (upper) layer.

• A comparative study [171] of the phase behavior of highly
charged colloidal spheres in a confined wedge geometry
reveals semi-quantitative agreement between theory and
experiment.

6.2.2. Non-equilibrium. The non-equilibrium case28 at finite
temperature as driven by a linear shear flow has been addressed
in [190, 191]. The steady state developed under shear as well as
the relaxation back to equilibrium after cessation of shear were
analyzed with the help of non-equilibrium Brownian dynamics
simulations. The pertinent results are the following.

• For increasing shear rates, the following steady states are
reported: first, up to a threshold of the shear rate, there is
a static solid which is elastically sheared. Then, at higher
shear rates the crystalline bilayer melts, and even higher
shear rates lead to a reentrant solid stratified in the shear
direction.

• After instantaneous cessation of shear, a nonmonotonic
behavior of the typical relaxation time is found. In
particular, application of high shear rates accelerates
the relaxation back to equilibrium since shear-induced
ordering facilitates the growth of the equilibrium crystal.

• The orientation of a crystalline bilayer can be tuned at will
upon applying a (strong) shear rate in the desired direction
and subsequently letting the system relax.

28 The starting unsheared configuration corresponds to a staggered square
lattice with a reduced surface particle density η = 0.24 and a reduced
screening strength λ = 2.5. Two walls are present to ensure the confinement.
To this end, screened Coulomb and short-ranged (of the Lennard-Jones type)
repulsive potentials were tested, and it was found that our results are marginally
sensitive to the choice of the repulsive wall–particle interaction.
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7. Conclusions

Various electrostatic effects in soft matter have been discussed.
Generally speaking, charged systems are fascinating because
they simultaneously involve short-ranged excluded volume
effects (as soon as the latter are properly taken into account)
already present in neutral systems, and additionally the
long-ranged Coulomb interaction. The latter constitutes a
formidable theoretical challenge.

In terms of similarities with classical solid state physics
and (elementary) quantum chemistry, two striking analogies
were identified: (i) the overcharging occurring at a sphere
reduces to the old Thomson problem; (ii) the ground state
of two spherical macroions is ionized, with the degree of
ionization (and therefore the attraction strength) growing with
the difference in surface charge density between the two
macroions. This behavior is highly reminiscent of (molecular)
ionic bonding [192], where the difference in electronegativity
between the two atoms governs its stability.

Excluded volume effects are equally important to fully
understand phenomena like overcharging (i.e. surface charge
reversal) and surface charge amplification. For overcharging,
the counterion layer can reach a high ordering when the local
packing fraction is raised by simply increasing the size of the
adsorbed counterions.

Image forces turn out to be systematically short ranged.
Their effects are only apparent close to the substrate at dis-
tances corresponding roughly to the linear size of the mi-
croions29 (counterions and/or charged monomers). As far
as the adsorption of polyelectrolytes is concerned, there
are two important driving forces that act concomitantly:
(i) polymerization-induced adsorption which behaves accord-
ing to the principle of counterion release (so entropy based)
and (ii) purely electrostatic lateral correlations (reminiscent of
the classical Wigner crystal).

Confined colloidal crystals seem to be now pretty
well understood up to bilayers. There is currently some
experimental [193, 194] and simulational [195] evidence that,
upon increasing the projected surface particle density, the
transition from two-layer to three-layer structures involve four
(and even more) layered crystalline structures. This is a
problem that needs an urgent and clear understanding.

On a more ‘material/engineering’ level, multilayered
structures can apparently be experimentally obtained by
combining oppositely charged colloids/micelles [196], instead
of polyelectrolytes. To explore this new field, a considerable
theoretical effort would be needed to identify the parameters of
phase space (such as salt concentration, charges of the colloids
and the substrates, particle size etc) allowing the onset of such
structures without strong clustering occurring.
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A Wynveen is acknowledged for a careful reading of the
manuscript.

References

[1] Madelung E 1918 Phys. Z. 19 542
[2] Ewald P P 1921 Ann. Phys. 64 253
[3] Feynman R P, Leighton R B and Sands M 2006 The Feynman

Lectures on Physics—Mainly Electromagnetism and Matter
Definitive edn, vol 2 (Reading, MA: Addison-Wesley)
Chapter 8 (Electrostatic Energy)

[4] Gouy G L 1910 J. Phys. Radium 9 457
[5] Chapman D L 1913 Phil. Mag. 25 475
[6] Debye P and Hückel E 1923 Phys. Z. 24 185
[7] Andelman D 1995 Electrostatic Properties of Membranes: the

Poisson–Boltzmann Theory (Handbook of Biological
Physics vol 1) ed R Lipowsky and E Sackman
(Amsterdam: Elsevier) chapter 12

[8] Jönsson B, Wennerstöm H and Halle B 1980 J. Phys. Chem.
84 2179

[9] Carnie S L and Torrie G M 1984 Adv. Chem. Phys. 56 141
[10] Hansen J-P and McDonald I R 2006 Theory of Simple Liquids

3rd edn (London: Academic) chapter 4, p 84
[11] McQuarrie D A 1976 Statistical Mechanics

(New York: Harper and Row) chapter 15, p 345
[12] Perel V I and Shklovskii B I 1999 Physica A 274 446
[13] Shklovskii B I 1999 Phys. Rev. E 60 5802
[14] Moreira A G and Netz R R 2000 Europhys. Lett. 52 705
[15] Netz R R and Orland H 1999 Europhys. Lett. 45 726
[16] Netz R R and Orland H 2000 Eur. Phys. J. E 1 203
[17] Shklovskii B I 1999 Phys. Rev. Lett. 82 3268
[18] Bonsall L and Maradudin A A 1977 Phys. Rev. B 15 1959
[19] Rouzina I and Bloomfield V A 1996 J. Chem. Phys. 100 9977
[20] Wennerström H, Jönsson B and Linse P 1982 J. Chem. Phys.

76 4665
[21] Manning G S 1969 J. Chem. Phys. 51 924
[22] Lebret M and Zimm B H 1984 Biopolymers 23 287
[23] Levin Y and Fisher M E 1996 Physica A 225 164
[24] Linse P, Gunnarsson G and Jönsson B 1982 J. Phys. Chem.

86 413
[25] Lebret M and Zimm B H 1984 Biopolymers 23 271
[26] Deserno M, Holm C and May S 2000 Macromolecules 33 199
[27] Barbosa M C, Deserno M, Holm C and Messina R 2004 Phys.

Rev. E 69 051401
[28] Linse P 2005 Adv. Polym. Sci. 185 111
[29] Esztermann A, Messina R and Löwen H 2006 Europhys. Lett.
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[64] Allahyarov E, Löwen H, Hansen J P and Louis A A 2003

Phys. Rev. E 67 051404
[65] Henle M L, Santangelo C D, Patel D M and Pincus P A 2004

Europhys. Lett. 66 284
[66] Taboada-Serrano P, Yiacoumi S and Tsouris C 2005 J. Chem.

Phys. 123 054703
[67] Qamhieh K and Linse P 2005 J. Chem. Phys. 123 104901
[68] Madurga S et al 2007 J. Chem. Phys. 126 234703
[69] Spitzer J J 1983 J. Colloid Interface Sci. 92 198
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[75] Jiménez-Ángeles F and Lozada-Cassou M 2008 J. Chem.

Phys. 128 174701
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[190] Messina R and Löwen H 2006 Phys. Rev. E 73 011405
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